Linux setup
Prerequisites
- Node.js 18+ — install via NodeSource or your package manager
- NVIDIA GPU with 10GB+ VRAM
- CUDA Toolkit
Install CUDA
Ubuntu/Debian:
sudo apt install nvidia-cuda-toolkit
Fedora:
sudo dnf install cuda-toolkit
Arch:
sudo pacman -S cuda
Verify the installation:
nvcc --version
nvidia-smi
Both commands should work. nvidia-smi should show your GPU and driver version. nvcc should show the CUDA compiler version.
Get your token
Go to c0mpute.ai/worker, login, and get your worker token from the Native Worker section.
Run the worker
npx @c0mpute/worker --token <your-token>
On first run:
- node-llama-cpp compiles with CUDA support
- The Qwen2.5 14B model downloads (~9GB)
- A benchmark runs to verify GPU performance
- The worker connects to the network and starts accepting jobs
Expected benchmark results:
- RTX 3060 12GB: ~30-40 tok/s
- RTX 3080: ~50-60 tok/s
- RTX 4070 Ti: ~60-80 tok/s
- RTX 4090: ~100+ tok/s
If you see less than 10 tok/s, CUDA is not being used. See Troubleshooting.
Run as a systemd service
For unattended operation, create a systemd service:
sudo nano /etc/systemd/system/c0mpute-worker.service
[Unit]
Description=c0mpute Native Worker
After=network.target
[Service]
ExecStart=/usr/bin/npx @c0mpute/worker --token YOUR_TOKEN
Restart=always
RestartSec=10
User=your-username
Environment=PATH=/usr/local/bin:/usr/bin:/bin
[Install]
WantedBy=multi-user.target
sudo systemctl daemon-reload
sudo systemctl enable c0mpute-worker
sudo systemctl start c0mpute-worker
Check status:
sudo systemctl status c0mpute-worker
journalctl -u c0mpute-worker -f
Alternatively, use tmux or screen for a simpler setup:
tmux new -s c0mpute
npx @c0mpute/worker --token <your-token>
# Ctrl+B, D to detach